AP Physics C
Summer Assignment
Mr. Peterson

Welcome to AP Physics C! It's great that you are interested in this subject. In AP Physics C,
we’ll be examining the fundamentals of physics. This course covers the first year of college
physics and is designed for you to develop a deep understanding of physics and to prepare
you for superior performance on the AP test.

This course will require you to commit to working on physics every single day. To get you
started, and to make sure you are interested and really want to put the work into this
comprehensive and challenging topic, I've assigned some tasks for you to complete this
summer, worth 100 points. Please show all the steps in your work. If insufficient work is
shown because it was all done on the calculator, then your calculator will receive half the
credit!

You will need to turn it in on the first day of school. It will be worth a substantial grade, and
part of what will determine if AP Physics C is right for you. The other part of that
consideration is a pre-test that we'll be taking during the first week of school, which covers
the summer assignment. Please email me at mpeterson@tmsacademy.org if you have any
questions!
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Summer Assignments:
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VIIL.

Purchase an AP Physics C Review Book.

Purchase a graphing calculator. You will not be allowed to run to the math
classrooms to get one or allowed to use your phone during class.

Purchase a lab notebook.

We have covered most of this chapter in AP Physics 1. So, it will not be a
big stretch. Do not worry too much about the last section. It has
integration, which we will cover at the beginning of the year.

In the lab notebook, write the chapter 5 summary.

The following work is to be grouped by diagrams, equations, and finally

examples. Ifitis notin the lab book in this way, you will be required to
rewrite it.

Next, in the lab notebook, draw all the diagrams for each section. Take notes to
make sure you understand them.

Then, for each section, go through each section and derive all the equations.

Following this, you need to go through the sections and do all the examples.

Finally, review all the diagrams, derivations, and examples so that you can
replicate them for the first assessment.



Newton's laws are fundamental in physics
These photos show two situations of using
Newton’s laws which involve some new
clements in addition to those discussed in
the previous Chapter. The downhill skier
illustrates friction on an incline, although at
this moment she is not touching the snow, and
so is retarded only by air resistance which is a
velocity-dependent force (an optional topic in
this Chapter), The people on the rotating
amusement park ride below illustrate the
dynamics of circular motion.

v T E »
™
L4
(&) . 7 . .
-
Using Newton's Laws: Friction,
. l .
Circular Motion, Drag Forces
CHAPTER-OPENING QUESTION—Guess now! y :
. . . ia i
You revolve a ball around you in a horizontal circle f " " 3l
at constant speed on a string, as shown here from Pl ’.__"
CONTENTS above. Which path will the ball follow if you e R T
v 0 . - -
: i let go of the string at point P? 72 ‘\:\
5-1 Applications of Newton's Pl LT |
Laws Involving Friction / ‘\
5-2 Uniform Circular ! \
Motion—Kinematics II J b \
5-3 Dynamics of Uniform : @ i
Circular Motion " = :
5-4 Highway Curves: Banked ‘\ !
and Unbanked \ ;’
s\
5-5 Nonuniform Circular A /‘
Maotion - * e
-6 Velocity-Dependent NS e S PT
Forces: Drag and Terminal 5 : : 2
\:':;0;?1\. g ane fermina his chapter continues our study of Newton's laws and emphasizes their

[undamental importance in physics. We cover some important applications

of Newton’s laws, including friction and circular motion. Although some

material in this Chapter may seem to repeat topics covered in Chapler 4, in
112 fact. new clements are involved.



5—1 Applications of Newton’s Laws
Involving Friction

Until now we have ignored friction. but it must be taken into account in most prac-
tical situations. Friction exists belween two solid surfaces because even the
smoothest looking surface is quite rough on a microscopic scale, Fig. 5-1. When we
try Lo slide an object across another surface, these microscopic bumps impede the
maotion. Exactly what is happening at the microscopic level is not yet fully under-
stood. It is thought that the atoms on a bump of one surface may come so close to
the atoms of the other surface that atiractive electric forces belween the atoms
could “bond™ as a tiny weld between the two surfaces. Sliding an object across a
surface is often jerky, perhaps due to the making and breaking of these bonds.
Even when a round objeet rolls across a surlace, there is still some friction, called
rolling friction, although it is generally much less than when objects slide across a
surface. We focus our attention now on sliding friction, which is usually called
kinetic friction (kinetic is from the Greek for “moving”).

When an object slides along a rough surface, the force of kinetic friction acts
opposite Lo the direction of the object’s velocily. The magnitude of the force of
kinetic friction depends on the nature of the two sliding surfaces. For given
surfaces, experiment shows that the friction force is approximately proportional to
the nermal force between the two surfaces, which is the force that either object
exerts on the other and is perpendicular to their common surface of contact (see
Fig. 5-2). The force of [riction between hard surfaces in many cases depends very
little on the total surface area ol contact; that is, the [riction force on this book is
roughly the same whether it is being slid on its wide face or on ils spine. assuming
the surfaces have the same smoothness. We consider a simple model of friction in
which we make this assumption that the friction force is independent of area. Then
we wrile the proportionality between the magnitudes of the friction force Fj, and
the normal force Fy as an equation by inserting a constant of proportionality, gy :

Fy = w Fy. [kinetic friction]

This relation is not a fundamental law; il is an experimental relation between
the magnitude of the friction force Fy, which acts parallel to the two surfaces,
and the magnitude of the normal [orce Fy. which acts perpendicular to the surfaces.
It is nor a vector equation since the two forces have directions perpendicular to
one another, The term gy is called the coefficient of kinetic friction, and its value
depends on the nature of the two surfaces. Measured values for a varicty of
surfaces are given in Table 5-1. These are only approximate, however, since p
depends on whether the surfaces are wet or dry, on how much they have been
sanded or rubbed, if any burrs remain, and other such factors. But py is roughly
independent of the sliding speed, as well as the area in contact.

TABLE 5-1 Coefficients of Friction’

Coefficient of Coefficient of
Surfaces Static Friction, g, Kinetic Friction, p,
Wood on wood 0.4 02
lee on ice 0.1 0.03
Metal on metal (lubricated) 0.15 0.07
Steel on steel (unlubricated) 0.7 0.6
Rubber on dry concrete 1.0 0.8
Rubber on wel concrete 0.7 0.5
Rubber on other solid surfaces 1-4 1
Teflon® on Teflon in air 0.04 0.04
Teflon on steel in air 0.04 0.04
Lubricated ball bearings <0.01 <0.01
Synovial joints (in human limbs) 0.01 0.01

"Walues are approximate and intended only as 4 guide.
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FIGURE 5-1 An object moving to

the right on a table or floor. The two
surfaces in contact are rough, at least
on a microscopic scale.

FIGURE 5-2 When an object is
pulled along a surface by an

applied force (F4 ). the foree of
friction Fy opposes the motion,

The magnitude of Fy, is proportional
to the magnitude of the normal
foree (Fy).
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FIGURE 5-2 Repeated for
Example 5-1.

FIGURE 5-3 Example 5-1.
Magnitude of the force of friction as
a function of the external foree
applied to an object initially at rest.
As the applied force is increased in
magnitude, the force of static friction
increases linearly to just matceh it,
until the applied force equals p, Fy.
If the applied force increases
further, the object will begin to
mave, and the friction force drops to
a roughly constant value
characteristic of kinetic [riction,

F50
o Fazuly
s 30
g |
f r2o Static i Kinetic
21 friction | {riction
£ A0 20 30 Wos0 60 70
1 L i I N A p
0 Applied force, Fy

My FN
no L
ke motion

shiding ——=

What we have been discussing up 1o now is kinetic friction, when one object slides
over another. There is also static friction, which refers to a foree parallel o the two
surfaces that can arise even when they are not sliding. Suppose an object such as a desk
is resting on a horizontal floor. If no horizontal force is exerted on the desk, there also
is no [riction force. But now suppose you try to push the desk. and it doesn’t move. You
are exerting a horizontal force, but the desk isn’t moving, so there must be another
foree on the desk keeping it from moving (the net force is zero on an object al rest).
This is the force of static friction exerted by the floor on the desk. IF you push with a
greater force without moving the desk, the force of static friction also has increased. If
you push hard enough, the desk will eventually start to move, and kinetic [riction takes
over. At this point, you have exceeded the maximum force of static friction, which is
given by (F)max = f Fr. where p is the coefficient of static friction (Table 5-1).
Because the force of static [riction can vary [rom zero to this maximum value, we write

P}l = My Fi\ .

You may have noticed that it is often easier to keep a heavy object sliding than

it is to start it sliding in the first place. This is consistent with g, generally being
greater than yy (see Table 5-1).

[static friction]

Friction: static and kinetic. Our 10.0-kg mystery box rests on
a horizontal Moor. The coefficient of static friction is u, = 0.40 and the coelfi-
cient of kinetic friction is g, = 0.30. Determine the foree of friction, Fj, . acting
on the box if a horizontal external applied foree F, is exerted on it of magnitude:
(@) 0, (b) 10N, (¢) 20N, (d) 38 N, and (¢) 40 N,

APPROACH We don’t know, right ofl, il we are dealing with static [riction or
kinetic friction, nor if the box remains at rest or accelerates. We need to draw a
free-body diagram, and then determine in each case whether or not the box will
move: the box starts moving if F, is greater than the maximum static [riction
force (Newton’s second law). The forces on the box are gravity mg, the normal
force exerted by the floor Fy. the horizontal applied force F,, and the friction
force Fy, . as shown in Fig. 5-2.

SOLUTION The [ree-body diagram of the box is shown in Fig, 5-2. In the vertical
direction there is no motion, so Newton's second law in the vertical direction
gives XF, = ma, = (. which tells us Fy — mg = 0. Hence the normal force is

(10.0kg)(9.80 m/s*) = 98.0N.

(a) Because F, = 0 in this [irst case, the box doesn’t move, and F, = 0.
(h) The force of static [riction will oppose any applied [orce up to a maximum of

By = (040)(980N) = 39N,
When the applied [oree is Fy = 10N, the box will not move. Newlon's second
law gives 2F, = F, — F, =0, so F; = 10N.
(¢) An applied force of 20N is also not sufficient to move the box. Thus
Fi = 20N to balance the applied force.
(d) The applied force of 38 N is still not quite large enough to move the box; so
the friction force has now inercased to 38 N to keep the box at rest.
(e) A force of 40 N will start the box moving since it exceeds the maximum force
of static [riction, u,Fy = (0.40)(98 N) = 39 N. Instead ol static [riction, we now
have kinetic friction. and its magnitude is

Fe = mlFy = (030)(98.0N) = 29N.
There is now a net (horizontal) force on the box of magnitude /7 = 40N — 29N =
11 N, so the box will accelerate at a rate

2E N

m 10.0kg
as long as the applied force is 40 N. Figure 5-3 shows a graph that summarizes
this Example.

Fy = mg =

1.1 m/s?
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Friction can be a hindrance. It slows down moving objects and causes heating
and binding ol moving parts in machinery. Friction can be reduced by using lubri-
cants such as oil. More effective in reducing friction between two surfaces is to
maintain a laver of air or other gas between them. Devices using this concept.
which is not practical for most situations, include air tracks and air tables in which
the layer of air is maintained by forcing air through many tiny holes. Another tech-
nique Lo maintain the air layer is to suspend objects in air using magnetic ficlds
(“magnetic levitation™). On the other hand, [riction can be helpful. Our ability 1o
walk depends on friction between the soles of our shoes (or feet) and the ground.
(Walking involves static [riction, not kinetic friction. Why?) The movement of a
car, and also its stability, depend on friction. When friction is low, such as on ice.
safe walking or driving becomes difficult.

CONCEPTUAL EXAMPLE 5-2 | A box against a wall. You can hold a box

against a rough wall (Fig. 5-4) and prevent it from slipping down by pressing hard Fp
horizontally. How does the application of a horizontal force keep an object from '
moving vertically? .

RESPONSE This won't work well il the wall is slippery. You need friction. Even F Fy
then, if you don’t press hard enough, the box will slip. The horizontal force you o
apply produces a normal force on the box exerted by the wall (net force horizontally | [

is zero since box doesnt move horizontally.) The force of gravity mg. acting -
downward on the box, can now be balanced by an upward static friction force e
whose maximum magnitude is proportional to the normal force. The harder you
push, the greater Fy is and the greater £ can be. If you don’t press hard enough.,
then mg = p, Fy and the box begins to slide down.

FIGURE 5-4 Example 5-2.

EXERCISEA If p, = 040 and mg = 20N, what minimum force F will keep the box
from falling: (a) 100 N: (b) 80 N: (c) 30 N; (d) 20 N; (¢) 8N?

IETTETEEEY Pulling against friction. A 10.0-kg box is pulled along a

horizontal surface by a [orce Fp of 40.0 N applied at a 30.0° angle above horizontal.

This is like Example 4-11 except now there is [riction, and we assume a cocfflicient

of kinetic friction of 0.30. Calculate the acceleration.

APPROACH The free-body diagram is shown in Fig. 5-5. It is much like that in  FIGURE 5-5 Example 5-3.
Fig. 4-21. but with one more force, that of [riction.

The friction force is kinetic as long as F = p Fy is less than F =
(40.0N) cos 30.0° = 34.6 N, which it is:

Fe = meFy = (0.30)(78.0N) = 234N,
Hence the box does accelerate:

i Fo. — F _ 346N — 234N _ 1.1 m/s?

o m 10.0kg ’ o

In the absence of friction. as we saw in Example 4-11, the acceleration would be
much grealer than this.
MNOTE Our [inal answer has only two significant ligures because our least significant
input value (= 0.30) has two,

| EXERCISE B 1T uy /iy were greater than Fpy, what would you conclude?

SECTION 5-1  Applications of Newton's Laws Involving Friction

F,

SOLUTION The calculation for the vertical (v) direction is just the same /P/
as in  Example 4-11, mg = (10.0kg)(9.80m/s’) = 980N and Fpy = # ~7130.0°
(40.0 N)(sin 30.07) = 20.0N. With y positive upward and a, = 0, we have N
Fy = mg + Fyy = may

Fy — 980N + 20.0N = 0, Fi
so the normal force is Fy = 78.0N. Now we apply Newton's second law for the -
horizontal (x) direction (positive 1o the right). and include the [riction [orce:

Foy — Fy = ma,. mg

115



(c) mg
FIGURE 5-6 Example 5-4.

(d) mg

FIGURE 5-7 Example 5-5.
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CONCEPTUAL EXAMPLE 5-4 | To push or to pull a sled? Your little sister
wanls a ride on her sled. If you are on flat ground. will you exert less force if you push
her or pull her? See Figs. 5-6a and b, Assume the same angle @ in cach case.
RESPONSE Let us draw free-body diagrams for the sled-sister combination, as
shown in Figs. 5-6¢ and d. They show, for the two cases, the forces exerted by
you, F (an unknown), by the snow, Fy and Fy,, and gravity mg, (a) If you push
her. and 6 = 0, there is a vertically downward component to your force. Hence
the normal foree upward exerted by the ground (Fig. 5-6¢) will be larger than mg
(where m is the mass ol sister plus sled). (b) If you pull her. your force has a
vertically upward component, so the normal force Fy will be less than mg,
Fig. 5-6d. Because the [riction force is proportional to the normal force, Fy, will
be less if you pull her. So you exert less force if you pull her.

Two boxes and a pulley. In Fig. 5-7a, two boxes are
connected by a cord running over a pulley. The coefficient of kinetic [riction
between box A and the table is 0.20. We ignore the mass of the cord and pulley and
any [riction in the pulley. which means we can assume that a [orce applied to one
end of the cord will have the same magnitude at the other end. We wish to find the
acceleration, a, of the system, which will have the same magnitude for both boxes
assuming the cord doesn’t stretch. As box B moves down, box A moves to the right.
APPROACH The free-body diagrams for each box are shown in Figs. 5-7b and ¢.
The forces on box A are the pulling force of the cord Fr. gravity m, g, the normal
force exerted by the table Fy. and a friction force exerted by the table F: the
forces on hox B are gravity my g, and the cord pulling up, .
SOLUTION Box A does nol move vertically, so Newton's second law tells us the
normal force just balances the weight,

Fy = nmyg = (50kg)(9.8m/s*) = 49N,
In the horizontal direction, there are two forces on box A (Fig. 5-Tb): F;, the
lension in the cord (whose value we don’t know), and the [orce of [riction

Fe = pFy = (020)(49N) = 9.8N.
The horizontal acceleration is what we wish to find; we use Newton’s second law
in the x dircetion, ZF,, = m, a,. which becomes (laking the positive direction
to the right and setling a,, = a):

SFy, = Fr = F, = mpa. [box A]
Next consider box B. The force of gravity mpgg = (2.0kg)(9.8 m/s*) = 19.6N
pulls downward: and the cord pulls upward with a force Fp. So we can write
Newton’s second law for box B (taking the downward direction as positive):

EFy = myg — F = [hox B]
[Notice that il @ # 0. then F; is not equal 1o myg.]

We have two unknowns, @ and £, and we also have two equations. We solve

the box A equation for Fy:

Fr = Fp + mua,
and substitute this into the box B equation:

myg —

mya.

— maa = mgd.
Now we solve for @ and put in numerical values:
mpg — F 196N — 98N

T omy bmy 50kg + 2.0kg

which is the acceleration of box A to the right, and of box B down.
If we wish, we can caleulate Fy using the third equation up from here:
Fr = F + mya = 98N + (5.0kg)(14m/s%) = 17N,

NOTE Box B is not in free fall. It does not fall at @ = g because an additional
force, Fy . is acting upward on it.

= 14m/s’.
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In Chapler 4 we examined motion on ramps and inclines, and saw that it is usually
an advantage lo choose the x axis along the plane, in the direction of acceleration.
There we ignored friction, but now we take it into account.

GV The skier. The skicr in Fig. 5-8a is descending a 307 slope, at ® PHYSICS APPLIED
constant speed. What can you say about the coefficient of kinetic friction p,? Skiing

APPROACH We choose the x axis along the slope, positive pointing downslope in FIGURE 5-8 Example 5-6. A
the direction of the skier’'s motion, The y axis is perpendicular to the surface  skier descending a slope; F = mg
as shown in Fig. 5-8b, which is the free-body diagram for our system which is the force of gravity (weight) on
we choose as the skier and her skis (lotal mass m). The forces acling arc the skier.

gravity. F; = mg. which points vertically downward (ot perpendicular to the
slope). and the two forces exerted on her skis by the snow—the normal force
perpendicular to the snowy slope (nor vertical), and the friction force parallel to
the surface. These three forces are shown acting at one point in Fig. 5-8b.
for convenience.

SOLUTION We have to resolve only one veelor into components, the weight F;.
and its components are shown as dashed lines in Fig. 5-8c:

Fsy = mgsind,

Foy

—mgcosf,

where we have stayed general by using ¢ rather than 30° for now. There
is no acceleration, so Newton's second law applied to the x and y components
gives

ZFy, = Fy — mgcost = ma, = 0

EF, = mgsing — w iy = ma, = 0.

From the first equation, we have Fy = mgcosf. We substitute this into the
second equation:

mgsintl — p, (mgeosf) = 0.
Now we solve for py:

mig sin sin #
= me——— = lant
mg cos cos f

which for # = 30° is

e = tanf = tan30® = 058

Notice thal we could use the equation
My = tan@

to determine py under a variety of conditions. All we need to do is observe at
what slope angle the skier descends at constant speed. Here is another reason
why it is often useful to plug in numbers only at the end: we obtained a general
result useful for other situations as well.

In problems involving a slope or “inclined plane.” avoid making errors /4 CAUTION

in the directions of the normal force and gravity. The normal force is not Directions of gravity and
vertical: it is perpendicular to the slope or plane. And gravity is not perpen- the normal force
dicular to the slope—gravity acts vertically downward toward the center of

the Earth.
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FIGURE 5-9 Example 5-7. Note
choice of x and y axes.
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A ramp, a pulley, and two boxes. A box of mass m, = 10.0 kg
rests on a surface inclined at # = 37° to the horizontal. It is connected by a light-
weight cord, which passes over a massless and frictionless pulley, to a second box
of mass my. which hangs [recly as shown in Fig. 5-9a. (a) If the coellicient of
static friction is p, = 0.40, determine what range of values for mass my will
keep the system at rest. (b) II the cocfficient of Kinetic friction is py = .30, and
my = 100 kg, determine the acceleration of the system.

APPROACH Figure 5-9b shows two free-body diagrams for box m, because the
force of [riction can be cither up or down the slope. depending on which direction
the box slides: (i) if mg = 0 or is sulficiently small, m 4 would tend to slide down the
incline, so Fj, would be directed up the incline; (ii) if my is large enough, m, will
tend to be pulled up the plane, so Fj, would point down the plane. The tension
force exerted by the cord is labeled Fy.

SOLUTION () For both cases (i) and (ii), Newton's second law for the y direction
(perpendicular to the plane) is the same:

Fy = mygeosfl = myay, = 0

since there is no y motion. So
Fy = mygcosh,

Now for the x motion. We consider case (i) first for which £F = ma gives
magsind — Fy — Fy = myay.

We want a, = 0 and we solve for £ since £y is related 1o my (whose value we
are seeking) by Fyr = mygg (see Fig. 5-9c¢). Thus

mygsind — Fp = Fr = mgg.

We solve this for my and set Fy al its maximum value p, Fy = pomy gcosd o
find the minimum value that my can have to prevent motion (a, = 0):

my = mysint — pomy, cost

(10.0kg)(sin 37" — 040 cos37") = 2.8kg.

Thus if myz < 2.8 ke, then box A will slide down the incline,

Now for case (ii) in Fig. 5-9b. box A being pulled up the incline. Newton's second
law is

nagsin® + Fp — Fpo= maa, = .

118 CHAPTERS5 Using Newton's Laws: Friction, Circular Motion, Drag Forces



Then the maximum value my can have without causing acceleration is given by

Fr = mpg = mygsin + pom,gceost
oar
my = mysinf + pom, cosd

= (10.0kg)(sin37° + 0.40cos37°) = 9.2kg.
Thus, to prevent motion, we have the condition
28kg < my < 92kg.

(b)Y I mg = 100kg and py = 030, then my will [all and m, will rise up the
plane (case ii). To find their acceleration a, we use ZF = ma for box A:

mya = Fp— mygsind — p Fy.
Since my accelerates downward, Newton's second law for box B (Fig. 5-9¢) tells
us mpa =mgg — Fp, or Fp = mgg — mga, and we substitute this into the
equation above:

maa = mpg — Mga — mygsind — py Fy.

We solve for the acceleration a and substitute Fy = m,gcos#, and then
m, = mg = 10.0kg, to find

_mpg — magsing — pym,gcosf
my + my

(10.0kg)(9.80m/s)(1 — sin37° — 0.30cos 377)
200 kg

= 0079 = 0.78m/s%.

NOTE It is worth comparing this equation for acceleration @ with that obtained
in Example 5-5:if here we let 6 = 0, the plane is horizontal as in Example 5-5,
and we obtain a = (mpg — pymyg)/(my + my) just as in Example 5-5.

5—2 Uniform Circular Motion—Kinematics

An object moves in a straight line if the net force on it acts in the direction of
motion, or the net force is zero. If the net force acts al an angle to the direction of
motion at any moment, then the object moves in a curved path. An example of the
latter is projectile motion, which we discussed in Chapter 3. Another important case
is that of an object moving in a circle, such as a ball at the end of a string revolving
around one’s head, or the nearly circular motion of the Moon about the Earth.

An object that moves in a circle at constant speed v is said to experience
uniform circular motion. The magnitude of the veloeily remains constant in this
case, but the direction of the velocity continuously changes as the object moves
around the circle (Fig. 5-10). Because acceleration is defined as the rate of change
of velacily, a change in direction of velocily constitutes an acceleration, just as a
change in magnitude of velocity does. Thus, an object revolving in a circle is contin-
uously accelerating, even when the speed remains constant (v, = », = »). We
now investigate this acceleration quantitatively.

FIGURE 5-10 A small object
maoving in a circle, showing how the
velocity changes. At each point,

the instantancous velocity is in a
direction tangent to the circular path.
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FIGURE 5-11 Determining the
change in velocity, AV, for a particle
maoving in a circle. The length Af is the
distance along the arc, from A to B.
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FIGURE 5-12 For uniform circular
maotion, 4 is always perpendicular to ¥,
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Acceleration is defined as

im &Y _ &Y

WA T oar

where AV is the change in velocity during the short time interval Af. We will eventually
consider the situalion in which Ar approaches zero and thus obtain the instantancous
acceleration. But for purposes of making a clear drawing (Fig. 5-11). we consider a
nonzero time interval. During the time interval At, the particle in Fig. 5-11a moves
from point A to point B, covering a distance Af along the arc which subtends an
angle Afl. The change in the velocity vector is ¥, — ¥, = AV, and is shown in Fig. 5-11b.

Now we let A7 be very small, approaching zero. Then Af and A# are also very
small, and ¥, will be almost parallel to ¥ (Fig. 5-1lc); A¥ will be essentially
perpendicular to them. Thus AV points toward the center of the cirele. Since a, by
definition, is in the same dircetion as A¥, it too must point toward the center of the
circle. Therefore, this acceleration is called centripetal acceleration (“center-
pointing” acceleration) or radial acceleration (since it is directed along the radius,
toward the center of the circle), and we denote it by dg.

We next determine the magnitude of the radial (centripetal) acceleration, ay.
Because CA in Fig. 5-11a is perpendicular to ¥, and CB is perpendicular lo ¥,,
it follows that the angle A#, defined as the angle between CA and CB, is also
the angle between ¥ and v,. Hence the vectors v, ¥,, and Av in Fig. 5-11b
form a triangle that is geometrically similar’ to triangle CAB in Fig. 5-11a.
If we take A to be very small (letting At be very small) and setting v = v, = 1,
because the magnitude of the velocity is assumed not to change, we can wrile

Av At
v b r
or
M
Av ~ ZAe
r

This is an exact equality when Af approaches zero, for then the arc length Af
cquals the chord length AB. We want (o find the instantaneous acceleration, ag., so
we usc the expression above o wrile

. Aw . v Al
= fn% < v
Then, because
. Af
Jim
is just the linear speed, v, of the object, we have for the centripelal (radial) acceleration
iy = -!:;- [centripetal (radial) acceleration] (5-1)

Equation 5-1 is valid even when » is nol constant.

To summarize, an object moving in a circle of radius r at constant speed v has
an acceleration whose direction is toward the center of the circle and whose magni-
nude is ag = v*/r. 1t is not surprising that this acceleration depends on » and r.
The greater the speed u. the faster the velocity changes direction: and the larger
the radius, the less rapidly the velocity changes direction.

The acceleration vector points toward the center of the circle. But the velocity
vector always points in the direction of motion, which is tangential to the circle.
Thus the velocity and aceeleration vectors are perpendicular to cach other at every
point in the path for uniform circular motion (Fig. 5-12). This is another example
that illustrates the error in thinking that acceleration and velocity are always in the
same direction. For an object [alling vertically, @ and ¥ are indeed parallel. But in
circular motion, @ and ¥ are perpendicular. not parallel (nor were they parallel in
projectile motion, Section 3-7).

EXERCISE € Can Equations 2-12, the kinemalic equations for constant acceleration, be
used for uniform circular motion? For example, could Eq. 2-12b be used o caleulate the
time for the revolving ball in Fig, 5-12 to make one revolution?

"Appendix A contains a review of geometry,



Circular motion is often deseribed in terms of the frequency f, the number of
revolutions per sccond. The period T of an objeet revolving in a circle is
the time required for one complete revolution. Period and frequency are related by

T = 3, (5-2)
f
For example, if an object revolves at a frequency of 3rev/s, then each revolution
takes +s. For an object revolving in a circle (of circumference 2@r) al constant
speed », we can wrile
2mr
7
since in one revolution the object travels one circumference.
Acceleration of a revolving ball. A 150-g ball at the end of a
string is revolving uniformly in a horizontal circle of radius 0.600 m, as in Fig. 5-10 or
5-12.The ball makes 2.00 revolutions in a second. What is its centripetal acceleration?
APPROACH The centripetal aceeleration is ap = »*/r. We are given r, and we
can find the speed of the ball, v, [rom the given radius and frequency.
SOLUTION II the ball makes two complete revolutions per second, then the ball
travels in a complete circle in a time interval equal to 0.500s, which is its
period T. The distance traveled in this time is the circumference of the circle, 27r,
where ris the radius of the circle. Therefore, the ball has speed

2ar 27 (0.600 m)
=2 - - 754m/s.
v T 0.5005) 4m/s

The centripetal acceleration’ is
v (754m/fs)

g = — =

r (0,600 m)

U=

= 947 m/s"

EXERCISE D If the radius is doubled to 1.20m but the period stays the same, by what
factor will the centripetal acceleration change? (a) 2, (b) 4, (c) £, (d) §. (¢) none of these.

Moon’s centripetal acceleration. The Moon's nearly circular
orbit about the Earth has a radius ol about 384,000 km and a period T of 27.3
days. Determine the acceleration of the Moon toward the Earth.
APPROACH Again we need to find the velocity » in order to lind ag. We will
need Lo converl to S units o get v in m/s.
SOLUTION In one orbit around the Earth, the Moon travels a distance 2wr,
where 7 = 3.84 x 10°m is the radius of its circular path. The time required for
one complete orbit is the Moon’s period of 27.3 d. The speed of the Moon in its
orbit about the Earth is v =2mr/T. The period T in seconds is
T = (27.3d)(24.0h/d)(3600s/h) = 2.36 % 10"s. Therclore,

v (27r)? A 47°(3.84 % 10°m)

b, S et gy Ty TV o
A T T* (236 x 10°s)*

= 0.00272m/s* = 2.72 % 107 m/s.

We can write this acceleration in terms of g = 9.80m/s® (the acceleration of
gravity at the Earth’s surface) as

a = 272 %107 m/s'( ) = 2.78 X 107%.

9.80 m/s’
NOTE The centripetal acceleration of the Moon, a = 2.78 X 107* g, is nor the
acceleration of gravity for objects at the Moon’s surface duc to the Moon's
gravity. Rather, it is the acceleration due to the Earth’s gravily [or any object
(such as the Moon) that is 384,000 km from the Earth. Notice how small this
acceleration is compared to the acccleration of objects near the Earth’s surface.

'Differences in the I'm.ll. digit can depend on whether vou keep all digits in vour caleulator for v {(which
gives ay = 94.7m/s%), orif youuse v = 7.54m/s in which case you get ay = 94.8m/s". Both results
are valid since our assumed accuracy is about £ (L1 m/s (see Section 1-3).

/L CAUTION

Distinguish the Moon's gravity
on ohjeets at its surface,

from the Eartlt’s gravity acting
on the Moon {this Example)

SECTION 5-2
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®PH\'SICS APPLIED *Centrifugalion

Centrifuge

Force exerted
by ligquid

FIGURE 5-13 ‘Two positions of a
rotating test tube in a centrifuge (top
view). AL A, the green dot represents a
macromolecule or other particle being
sedimented. It would tend to follow
the dashed line, heading toward the
hottom of the tube, but the fluid resists
this motion by exerting a force on the
particle as shown at point B.

FIGURE 5-14 A force is required
1o keep an object moving in a circle,
Il the speed is constant, the foree is
directed toward the circle's center.

~ -

Se————

A, cAuUTION
Centripetal force is not « new

kind of force { Every foree must
b exerted by an object)

Centrifuges and very high speed ultracentrifuges, are used to sediment materials
quickly or to separate materials. Test tubes held in the centrifuge rotor are accelerated
to very high rotational speeds: see Fig. 5-13, where one test tube is shown in
two positions as the rotor turns, The small green dot represents a small particle,
perhaps a macromolecule, in a fuid-filled test tube. At position A the particle has
a tendency to move in a straight line, but the fluid resists the motion of the particles,
exerting a centripetal force that keeps the particles moving nearly in a circle. The
resistive force exerted by the fluid (liquid, gas, or gel, depending on the application)
usually does not quite equal me*/r. and the particles move slowly toward the bottom
of the tube. A centrifuge provides an “effective gravity” much larger than normal
gravily because of the high rotational speeds, thus causing more rapid sedimentation.

Ultracentrifuge. The rotor of an ultracentrifuge rotates at
50.000 rpm (revolutions per minute). A particle at the top of a test tube (Fig. 5-13)
is 6.00 em from the rotation axis. Caleulate its centripetlal acceleration, in “g's.”
APPROACH We calculate the centripetal acceleration from ay = v'/r.
SOLUTION The test tube makes 5.00 X 10° revolutions each minute. or. dividing
by 60s/min, 833 rev/s. The time to make one revolution, the period T, is

T = = 120 % 1073 s/rev.

(833 rev/s)
At the top of the tube. a particle revolves in a circle of circumlference
2mr = (27)(0.0600 m) = 0.377 m per revolution. The speed of the particle is then

0377 m/rev ) s
= 0 (Sl g o102 e
¢ (1.2(: % 107 s/rev /s

The centripetal acceleration is
o (304 X 10°m/s) .
=—=""—"—""" =1, 0°m/s2,
g = 00600 m 1.64 % 10°m/s°,

which, dividing by g = 9.80m/s’, is 1.67 < 10° g's = 167,000 g's.

5-3 Dynamics of Uniform Circular Motion

According to Newton's second law (XF = mi), an object that is accelerating
must have a nel force acting on il. An object moving in a circle, such as a ball on
the end of a string, must therefore have a foree applied to it to keep it moving in
that circle. That is, a net force is necessary to give it centripetal acceleration. The
magnitude of the required [orce can be calculated using Newton’s second law for
the radial component, XF, = may, whereagis the centripetal acceleration,
ag = v*/r. and X Fy, is the total (or net) force in the radial direction:

o

EF = mag = m = [circular motion] (5-3)

For uniform circular motion (v = constant), the acceleration is ay. which is
directed toward the center of the circle at any moment. Thus the ner force too must
be directed toward the center of the circle, Fig. 5-14. A net force is necessary
because if no nel force were exerted on the object, it would not move in a circle
but in a straight line, as Newton’s first law tells us. The direction of the net force is
continually changing so that it is always dirccted toward the center of the circle.
This force is sometimes called a centripetal (“pointing toward the center”) force.
Bul he aware that “centripetal force™ does not indicate some new kind of foree.
The term merely describes the direction of the net force needed to provide a
circular path: the net force is directed toward the circle’s center. The force must be
applied by other objects. Far example. to swing a ball in a circle on the end of a
string. you pull on the string and the string exerts the force on the ball. (Try it.)
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There is a common misconception thal an object moving in a circle has an outward
force acting on it, a so-called centrifugal (“center-flecing™) force. This is incorrect: there
is no outward force on the revolving object. Consider, for example, a person swinging a
ball on the end of & string around her head (Fig. 5-15). If you have ever done this your-
sell. you know that you [eel a force pulling outward on your hand. The misconception
arises when this pull is interpreted as an outward “centrifugal” force pulling on the ball
that is transmitled along the string to your hand. This is not what is happening at all. To
keep the ball moving in a circle, you pull éimwardly on the siring, and the string exerls
this force on the ball. The ball exerts an equal and opposite force on the string
(Newton's third law). and this is the outward foree your hand feels (see Fig. 5-15).

The force on the ball is the one exerted inwardly on it by you, via the string. To
see even more convincing evidence that a “centrifugal force” does not act on the
ball. consider what happens when you let go ol the string. If a centrifugal force
were acting, the ball would fly outward, as shown in Fig. 5-16a. But it doesn’t; the
ball flies off tangentially (Fig. 5-16b). in the direction of the veloeity it had at the
moment it was released, because the inward force no longer acts. Try it and see!

EXERCISE E Rcturn to the Chapter-Opening Question, page 112, and answer it again now. Try
to explain why you may have answered differently the first time.

Force on revolving ball (horizontal). Estimate
the force a person must exert on a string attached to a 0.150-kg ball to make the
ball revolve in a horizontal circle of radius 0.600 m. The ball makes 2.00 revolutions
per second (T = 0.500s), as in Example 5-8. Ignore the siring’s mass.

APPROACH First we need to draw the free-body diagram for the ball. The forces
acting on the ball are the foree of gravity, mg downward, and the tension force Fy
that the string exerts toward the hand at the center (which occurs because the
person exerts that same [orce on the string). The free-body diagram for the ball is
as shown in Fig. 5-17.The ball’s weight complicates matters and makes it impos-

small, and put ¢ = (}in Fig. 5-17. Thus F, will aet nearly horizontally and, in any
case, provides the force necessary to give the ball its centripetal acceleration.
SOLUTION We apply Newton’s second law to the radial direction, which we
assume is horizontal:

(2F)g = mag.

where ag = v’/r and v = 27r/T = 27(0.600 m)/(0.500s) = 7.54 m/s. Thus

e (7.54 m/ﬁ}

T = (0150kg) S 14N.

F=m

ball's weight; it is mg = (0.150kg)(9.80m/s”) = 1.3N, about {; of our result,
which is small but not so small as to justify stating a more precise answer for Fy.
NOTE To include the effect of mg, resolve F; in Fig. 5-17 into components, and
set the horizontal component of Fy cqual to mv’/r and its vertical component
equal to mg.

FIGURE 5-17 Example 5-11.

SECTION 5-3  Dynamics of Uniform Circular Motion
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FIGURE 5-15 Swinging a ball on
the end of a string.

FIGURE 5-16 Il centrifugal force
existed, the revolving ball would fly
outward as in (a) when released. In
fact, it flics off tangentially as in (b).
For example, in (c) sparks [ly in
straight lines tangentially from the
edge of a rotating grinding wheel.
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mg

FIGURE 5-18 Example 5-12. Free-
body diagrams [or positions | and 2.

A cauTion
Circular motion only if cord
i rnder tension

FIGURE 5-19 Exercise F

124 CHAPTER 5

Revolving ball (vertical circle). A 0.150-kg ball on the end
of a 1.10-m-long cord (negligible mass) is swung in a vertical circle. (a) Delermine
the minimum speed the ball must have at the top of its arc so that the ball
continues moving in a circle. (b) Calculate the tension in the cord at the bottom
of the arc, assuming the ball is moving at twice the speed of part (a).
APPROACH The ball moves in a vertical circle and is nor undergoing uniform circular
maotion. The radius is assumed constant, but the speed » changes because of gravity.
Nonctheless, Eq. 5-1 is valid at each point along the circle, and we use it at the tlop and
botlom points. The [ree-body diagram is shown in Fig. 5-18 for both positions.
SOLUTION («) At the top (point 1), two forces act on the ball: mg, the force
of gravity, and Fy,. the tension force the cord exerts at point 1. Both act down-
ward, and their veclor sum acts to give the ball its centripetal acceleration ay . We
apply Newton’s second law, for the vertical direction, choosing downward as posi-
live since the acceleration is downward (toward the center):
(2F)g = mag
Fry +mg = m t—r' [at top]
From this equation we can see that the tension force Fry at point | will get larger
if v, (ball’s speed at top of circle) is made larger. as expected. But we are asked
for the minimum speed to keep the ball moving in a circle. The cord will remain
taut as long as there is tension in it. But if the tension disappears (because v, is
too small) the cord can go limp, and the ball will fall out of its circular path. Thus,
the minimum speed will occur if Fyy = 0. for which we have
a
mg = m ? [minimum speed at top]
We solve for v, keeping an extra digit for use in (b):

y = Vgr = V(9.80m/s))(1.10m) = 3.283m/s.
This is the minimum speed at the top of the circle if the ball is 10 contlinue
moving in a circular path.
(h) When the ball is at the bottom of the cirele (point 2 in Fig. 5-18). the cord
exerls its tension force Fyp, upward, whereas the force of gravity, mg, still acls
downward. Choosing uptward as positive. Newton’s second law gives:
(ZF)y = may

2
3

Fry —mg = m—- [at bottom]
r

The speed v, is given as twice that in (a), namely 6.566 m/s. We solve for F:

v
Fp; = mT‘ + mg
(6.566 m/s)*

(0:150ke) =g + (0.150kg)(9.80m/sY) = 7.35N.

EXERCISEF A rider on a Ferris wheel moves in a vertical circle of radius r at constant speed v
(Fig. 5-19). Is the normal force that the seat exerts on the rider at the top of the wheel (a) less
than, () more than, or (¢) the same as, the foree the seat exerts at the bottom of the wheel?




Conical pendulum. A small ball of mass m. suspended by a

cord of length {. revolves in a circle of radius r = £sin#, where f is the angle
the string makes with the vertical (Fig. 5-20). (a) In what direction is the acceler-
ation of the ball, and what causes the acceleration? (b) Caleulate the speed and
period (time required for one revolution) of the ball in terms of £, 6, g, and m.

APPROACH We can answer (a) by looking at Fig. 5-20. which shows the forces

on the revolving ball at one instant: the acceleration points horizontally toward £ o0 jd
ie. - = 2 T J

the center of the ball's circular path (not along the cord). The force responsible 1

for the acceleration is the ner force which here is the vector sum of the e T
: ) - e : . Fysin@i| ~
forces acting on the mass m: its weight Fy (of magnitude F; = mg) and the foree neg e?

exerted by the tension in the cord, Fy. The latter has horizontal and vertical
componenis of magnitude Fpsin @ and F; cos 8, respectively.
SOLUTION (h) We apply Newton's second law to the horizontal and vertical
directions. In the vertical direction, there is no motion, so the acceleration is 2610 FIGURE 5-20 Example 5-13.
and the net force in the vertical direction is zero: Conical pendulum,

Freos® — mg = 0.
In the horizontal direction there is only one force, of magnitude Fysin @, that acts
toward the center ol the circle and gives rise o the acceleration »*/r. Newton's
second law tells us:

. e

Frsin® = g

We solve the second equation [or », and substitute for £y from the first equation

(and use r = Esinf):
rFysin 6
‘& \/__I.j____. . __r_( ______ _)sin,,
" m\ cos
|Eg sin® @

_\/cosﬂ

The period T is the time required to make one revolution, a distance of
27r = 2wlsin A, The speed v can thus be written v = 2xlsin /7" then

2mlsing _ 2wlsing

a v a / fgsin*f
N cos#

_ Zﬂ\/fmsﬂ_
5

NOTE The speed and period do not depend on the mass m of the ball. They do
depend on { and .

0LV, Py

S (&

<

~ " g
& Uniform Circular Motion is, all the forces or components that act radially.
e 1 D " dv di — T toward or away from the center of the circular path.
PO R il ree-llw l{ 1“8"“[;“‘ e ""“_’_"';g all 1 (‘i} orees The sum of these forces (or components) provides the
o acting on each object under consideration. Be sure centripetal acceleration, ag = ler_

you can identily the source of each force (lension in
a cord, Earth’s gravity, friction, normal force, and
50 on). Don’t put in something that doesn’t belong
(like a centrifugal force).

3. Choose a convenient coordinate system, preferably
with one axis along the acceleration direction.

4. Apply Newton’s second law to the radial component:

2. Determine which of the forces, or which of their compo-

v
. . : ZF)g = mag = m—- radial direction
nents, act to provide the centripetal acceleration—that (ZF)x R r [ 1
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FIGURE 5-22 Race car heading
into a curve, From the tire marks we
see that most cars experienced a
sufficient friction force Lo give them
the needed centripetal acceleration
for rounding the curve safely. But, we
also see tire tracks of cars on which
there was not sufficient force—and
which unfortunately followed more
nearly straight-line paths.

FIGURE 5-23 Example 5-14.
Forces on a car rounding a curve on a
flat road. (a) Front view, (b) top view.

Fy

() Fg=mi

(b)

FIGURE 5-21 The road exerts an h):::,::l:,{ffmﬁ,.n fonces
inward force on a car (friction against acting on each tire)
the tires) to make it move in a
circle. The car exerts an inward force
on the passenger.

Force on
passenger

5-4 Highway Curves: Banked and Unbanked

An example of circular dynamics occurs when an automobile rounds a curve, say to
the left, In such a situation, you may fecl that you are thrust outward toward the right
side door. Butl there is no myslerious centrifugal force pulling on you. What is
happening is that you tend to move in a straight line, whercas the car has begun to
lollow a curved path. To make you go in the curved path, the seat (friction) or the
door of the car (direct contact) exerts a force on you (Fig. 5-21). The car also must
have a force exeried on it loward the center of the curve il il is lo move in that curve.
On a flat road, this force is supplied by friction between the tires and the pavement.

If the wheels and tires of the car are rolling normally without slipping or
sliding, the bottom of the tire is al rest against the road at cach instant: so the fric-
tion force the road exerts on the tires is static friction. But if the static friction
force is not great enough, as under icy conditions or high speed, sufficient friction
force cannot be applied and the car will skid out of a circular path into a more
nearly straight path. See Fig. 5-22. Once a car skids or slides. the friction force
becomes kinetie [riction, which is less than static [riction,

2 OVESEE LS skidding on a curve. A 1000-kg car rounds a curve on a flat
road of radius 50 m at a speed of 15 m/s (54 km/h). Will the car follow the curve,
or will it skid? Assume: (a) the pavement is dry and the coefficient of static fric-
tion is g, = 0.60; (h) the pavement is icy and p, = (.25,

APPROACH The forces on the car are gravity mg downward, the normal force Fy
exerted upward by the road. and a horizontal [riction force due Lo the road. They
are shown in Fig. 5-23. which is the [ree-body diagram for the car. The car will
follow the curve il the maximum static friction force is greater than the mass
times the centripetal aceeleration.
SOLUTION In the vertical direction there is no acceleration. Newton’s second
law tells us that the normal force Fy on the car is equal to the weight mg:
Fy = mg = (1000kg)(9.80m/s*) = 9800 N.
In the horizontal direction the only force is friction. and we must compare it to the
force needed to produce the centripetal acceleration to see if it is sufficient. The net
horizontal force required to keep the car moving in a circle around the curve is
SF) = < e qoog PR
(ZF)g = mag = m = { g) G0m)
Now we compute the maximum total static friction force (the sum of the friction
forces acting on each of the four tires) to see if it can be large enough to provide
a safe centripetal acceleration. For (a). p, = 0.60, and the maximum friction
foree attainable (recall from Seclion 5-1 that F, = p, Fy) is

(Fidmox = By = (0.60)(9800N) = S880N.

Since a force of only 4500N is needed. and that is, in fact, how much will be
exerted by the road as a static friction force, the car can follow the curve. But in

= 4500 N.
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(H) the maximum static [riction force possible is
(Fidmas = #sFy = (0.25)(9800N) = 2450N.

The ear will skid because the ground cannot exert suflicient force (4500N is
needed) to keep it moving in a curve of radius 50 m at a speed of 54 km/h.

The banking of curves can reduce the chance of skidding. The normal force
exerted by a banked road, acting perpendicular to the road, will have a component
toward the center of the circle (Fig. 5-24), thus reducing the reliance on friction.
For a given banking angle 6, there will be one speed for which no friction at all is
required. This will be the case when the horizontal component of the normal force
toward the center of the curve, Fysin# (sec Fig. 5-24). is just cqual to the [orce
required to give a vehicle its centripetal acceleration—that is, when

Fysing = m ? [no friction required]

The banking angle of a road, 8, is chosen so that this condition holds for a partic-
ular speed, called the “design speed.”

TS EN Banking angle. (a) For a car traveling with speed v around a
curve of radius 7, determine a formula for the angle at which a road should be

banked so that no friction is required. () What is this angle for an expressway
off-ramp curve of radius 50 m at a design speed of 30 km/h?

APPROACH Lven though the road is banked. the car is still moving along a horizontal
circle, so the centripetal acceleration needs to be horizontal. We choose our x and y
axes as horizontal and vertical so that ay . which is horizontal, is along the x axis. The
forces on the car are the Earth's gravity mg downward, and the normal foree Fy
exerted by the road perpendicular to its surface. See Fig. 5-24, where the components
ol Fy are also shown. We don’l need to consider the [riction of the road because we
arc designing a road to be banked so as to climinate dependence on friction.
SOLUTION (a) Since there is no vertical motion, XF, = ma, gives us
Fycos# — mg = 0.
Thus,
. mg
Fy = ——-
L cos
[Note in this case that Fy = mg since cosfl = 1]
We substitute this relation for Fy into the equation for the horizontal motion,

Fysinfl = m—-
r
and obtain
;
mg »
——sinf = m—
cos 6 r
or
N
v
tanfl = —-
rg

This is the formula for the banking angle #: no [riction needed at speed v,
(b)yForr =50mand v = 50km/h (or 14m/s),
(14 m/s)?

tand = —— —=
(50 m)(9.8 m/s?)

= 0.40.

sof = 22°

EXERCISE G ‘The banking angle of a curve for a design speed v is #, . What banking angle 8,
is needed for a design speed of 207 (a) #: = 48;: (b) 6: = 20;: (c) tanth = 4 tand;
() tan @, = 21an®,.

EXERCISE H Can a heavy truck and a small car travel safely at the same speed around an
icy banked-curve road?

PHYSICS APPLIED
Buanked curves

FIGURE 5-24 Normal force ona
car rounding a banked curve, resolved
into its horizontal and vertical
components. The centripetal
acceleration is horizontal (not parallel
to the sloping road). The friction force
on the tires, not shown, could point up
or down along the slope, depending on
the car's speed. The friction force will
be zero for one particular speed.

/M CAUTION

Py 15 now afwavs equal 1o mg
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FIGURE 5-25 The speed of an
object moving in a circle changes il
the force on it has a tangential
component, Fy,, . Part (a) shows the
force F and its vector components;
part (b) shows the acceleration
vector and its vector components.

*5-5 Nonuniform Circular Motion

Circular motion at constant speed occurs when the net force on an object is
exerted toward the center of the circle. If the net force is not directed toward the
center but is at an angle, as shown in Fig. 5-25a, the force has two components.
The component directed toward the center of the circle. Fp. gives rise 1o the
centripetal acceleration, dp. and keeps the object moving in a circle. The
component tangent to the circle. F,,, . acts to increase (or decrease) the speed. and
thus gives rise to a component of the acceleration tangent lo the circle, d,,,. When
the speed of the object is changing, a tangential component of force is acting.
When you first start revolving a ball on the end of a string around your head. you
must give it tangential acceleration. You do this by pulling on the string with your hand
displaced from the center of the circle. In athletics, a hammer thrower accelerates the
hammer tangentially in a similar way so that it reaches a high speed before release.
The tangential component of the acceleration, ay,,. has magnitude equal to
the rate of change of the magnitude of the object’s velocity:
_dv
dt
The radial (centripetal) acceleration arises from the change in direction of the
velocity and. as we have seen, has magnitude
v
=

(5-4)

Qan

ag =

The tangential acceleration always points in a direction tangent to the circle, and is
in the direction of motion (parallel to ¥, which is always tangent to the circle) if
the speed is increasing, as shown in Fig. 5-25b. If the speed is decreasing, &,
points antiparallel to ¥. In cither case. d,,, and dg are always perpendicular Lo cach
other; and their directions change continually as the object moves along its circular
path. The total veetor acceleration 4 is the sum of the two components:

i = d,, +dg. (5-5)
Since dp and &,,, are always perpendicular to each other. the magnitude of d at any
moment is

-3 3
a = O + a5

B CUVEEES TN Two components of acceleration. A race car starts from
rest in the pil arca and accelerates al a uniform rate to a speed of 35 m/s in 115,
moving on a circular track of radius 500 m. Assuming constant tangential
acceleration, find (a) the tangential acceleration, and (b) the radial acceleration,
al the instant when the speed is v = 15m/s.

APPROACH The tangential acceleration relates to the change in speed of the car,
and can be calculated as a,,, = Av/Ar. The centripetal acceleration relates to the
change in the direction of the velocity vector and is caleulated using ag = v*/r.
SOLUTION (a) During the 1l-s time interval, we assume the tangential
acceleration ay,, is constant. Its magnitude is

Av (35m/s — O0m/s)

an = j = ll—s = 32 1'11}'83.

(b) When » = 15m/s. the centripetal acceleration is

a2 ]
v (15 m/s) -
ag = — = —(———— = 045m/s’,
R r (500 m) /

NOTE The radial acceleration increases continually, whereas the tangential accel-
eralion stays constant.
EXERCISE | When the speed of the race car in Example 5-16 is 30m/s, how are (a) ay,,
and (b) ag changed?
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These concepls can be used for an object moving along any curved path, such as
that shown in Fig. 5-26. We can treal any portion of the curve as an arc of a circle with
a “radius of curvature”™ r. The velocity at any point is always tangent to the path. The
acceleration can be writlen, in general, as a vector sum of two components: the tangen-
tial component a,,, = dv/di, and the radial (centripetal) component ay = v°/r.

*5-6 Velocity-Dependent Forces:
Drag and Terminal Velocity

When an object slides along a surface, the force of friction acting on the object is
nearly independent of how fast the object is moving. But other types of resistive forces
do depend on the object’s velocity. The most important example is for an object
moving through a liquid or gas, such as air. The fluid offers resistance to the motion of
the objeet, and this resistive force, or drag force. depends on the velocity of the object.’
The way the drag force varies with velocity is complicated in general. But for small
objects at very low speeds, a good approximation can often be made by assuming that
the drag foree, £y, . is directly proportional to the magnitude of the velocity, v:
Fy, = —bu. (5-6)
The minus sign is necessary because the drag force opposes the motion. Here h is a
constanl (approximately) that depends on the viscosity of the (luid and on the size
and shape of the object. Equation 5-6 works well for small objects moving at low
speed in a viscous liquid. It also works for very small objects moving in air al very
low speeds, such as dust particles. For objects moving at high speeds, such as an
airplane, a sky diver, a baseball, or an automobile, the force of air resistance can be
better approximated as being proportional to v’

Fy = v
For accurate calculations, however. more complicated forms and numerical
integration generally need to be used. For objects moving through liquids, Eq. 5-6
works well for everyday objects at normal speeds (e.g., a boal in water).

Let us consider an object that falls from rest, through air or other fluid, under
the action of gravity and a resistive force proportional to v. The [orces acling on
the object are the force of gravity, mg. acting downward, and the drag force, —bu,
acling upward (Fig. 5-27a). Since the velocity ¥ points downward, let us take the
positive dircetion as downward. Then the net force on the object can be writlen

ZF = mg — bu.
From Newton's second law ZF = ma, we have

dv

mg — bv L
where we have written the acceleration according to its definition as rale of change of
velocity, a = dv/di. At 1 =0, we set v = 0 and the acceleration dv/dt = g. As
the object falls and increases in speed, the resistive force increases, and this reduces the
acceleration, dv/dt (see Fig. 5-27b). The velocity continues to increase, but at a slower
rate. Eventually, the velocity becomes so large that the magnitude of the resistive force,
bu, approaches that of the gravitational force. mg: when the two are equal, we have

mg — by = 0. (5-8)
At this point dv/dt =0 and the object no longer increases in speed. It has
reached its terminal velocity and continues 1o fall at this constant velocity until it
hits the ground. This sequence of events is shown in the graph of Fig. 5-27b. The
value of the terminal velocity ¢ can be obtained from Eq. 5-8.
mg

b

If the resistive force is assumed proportional to °, or an even higher power of »,
the sequence of events is similar and a terminal velocity reached, although it will
nol be given by Eq. 5-9.

(5-7)

(5-9)

o =

"Any buoyant force {Chapter 13) is ignored in this Section.

FIGURE 5-26 Object following a
curved path (solid line). Al point P
the path has a radius of curvature r.
The object has velocity ¥, tangential
acceleration dy, (the object is here
increasing in speed), and radial
(centripetal) acceleration dg
(magnitude ap = v*/r) which
points toward the center of
curvature C.

FIGURE 5-27 (a) Forces acling on
an object falling downward.

(b} Graph of the velocity of an object
falling due to gravity when the air
resistance drag foree is Fy = —bu.
Initially, v = 0 and dv/dt = g, but
as time goes on di/dt (= slope of
curve) decreases because of £y,
Eventually, v approaches a
maximum value, vy, the terminal
velocity, which occurs when Fi has
magnitude equal 1o mg.

FD =-hV

mg
(a)

(b)
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Force proportional to velocity. Dciermine the velocity as a

function of time for an object falling vertically from rest when there is a resistive

force linearly proportional to v.

APPROACH This is a derivation and we start with Eq. 5-7. which we rewrile as
dv b
T kR

SOLUTION In this equation there are two variables, v and 1. We collect variables

of the same type on one or the other side of the equation:

dv dv b
= dt or — = ——d.
mg m
87 m” v b
Now we can integrate. remembering v = 0 at 1 = (k
[ dve b [
] 2=
o, _ M8 m Jy
v b
which gives
1 Com b
In n——g = In ~28) = ===l
b b m
or
v—mg/b b
-mg/b —  m

We raise each side to the exponential [note that the natural log and the exponen-

tial arc inverse operations of cach other: ¢™* = x, or In(e*) = x| and obtain
ng mg b,
Pl M. .
b b
50 ;
mg b,
p = —({1l—-e™)
LT

This relation gives the veloeity # as a function of time and corresponds to the
graph of Fig. 5-27b. As a check,note thatat 1 =0, and » =0
mg d
alt=0) = & = mee.

me () _
di b di b \m) &

b
as expected (see also Eq. 5-7). Al large f,¢ ™' approaches zero, so v approaches
mg/b, which is the terminal velocity, vp, as we saw carlier. Il we set 7 = m/b,
then v = vl = ¢ 7). So r=m/b is the time required for the velocity to
reach 63% of the terminal velocity (since ¢’ = 0.37). Figure 5-27b shows a plot
of speed v vs, time £, where the terminal veloeity vy = mg/b.

dv

b
— ey =

| Summary

When two objects slide over one another, the force of friction
that each exerts on the other can be written approximately as
Fir = py Fy. where Fy is the normal force (the force cach object
exerts on the other perpendicular o their contact surfaces), and py,
is the coellicient of kinetic friction. If the objects are at rest relative
to cach other, even though forees act, then Fi; is just large enough
to hold them at rest and satisfies the inequality Fi; = pg Fy . where
ity 15 the cocflicient of static friction.

An object moving in a circle of radius r with constant speed v
is said to be in uniform circular motion. It has a radial acceleration
ay that is directed radially toward the center of the circle (also
called ipetal accel ). and has itude

2
»

g = (5-1)
The direction of the velocity vector and that of the accelera-

tion dig are continually changing in direction, but are perpen-
dicular to each other at each moment.

A force is needed to keep an object revolving uniformly
in a circle, and the direction of this force is toward the
center of the circle. This force may be gravity (as lor
the Moon), or tension in a cord, or a component of the
normal force, or another type of force or a combination of
forees.

[*When the speed of circular motion is not constant, the
acceleration has two components, tangential as well as radial.
The force too has tangential and radial components.]

[*A drag force acts on an object moving through a fluid,
such as air or water. The drag force I, can often be approxi-
mated by F = —bv or Fy o o7, where v is the speed of the
object relative to the fuid.]
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| Questions

1. A heavy crate rests on the bed of a flatbed truck. When the
truck accelerates, the crate remains where it is on the truck, so
it too, accelerates. What force causes the crate to accelerate?

2. A block is given a push so that it slides up a ramp. After the
block reaches its highest point, it slides back down. but
the magnitude of its acceleration is less on the descent than
on the ascent. Why?

3. Why is the stopping distance of a truck much shorter than
for a train going the same speed?

4. Can a coefficient of friction exceed 1.07
5. Cross-country skiers prefer their skis to have a large coeffi-
cient of static friction but a small coeflicient of kinetic [ric-
tion. Explain why. [/int: Think of uphill and downhill.]
When you must brake your car very quickly, why is it safer
il the wheels don’t lock” When driving on slick roads, why is
it advisable to apply the brakes slowly?
‘When attempting to stop a car guickly on dry pavement, which
of the lollowing methods will stop the car in the least time?
(a) Slam on the brakes as hard as possible, locking the wheels
and skidding to a stop. (b) Press the brakes as hard as possible
without locking the wheels and rolling to a stop. Explain.
8. You are trying to push your stalled car. Although you apply
a horizontal force of 400 N to the car, it doesn’t budge, and
neither do you, Which force(s) must also have a magnitude
of 400 N: (a) the force exerted by the car on you: (b) the
friction force exerted by the car on the road; (¢) the normal
force exerted by the road on you: (d) the friction force
exerted by the road on you?

It is not easy to walk on an icy sidewalk without slipping. Even

your gait looks different than on dry pavement. Describe what

you need to do differently on the icy surface and why.

A car rounds a curve at a steady 50km/h. If it rounds the

same curve at a steady 70 km/h, will its acceleration be any

different? Explain.

Will the acceleration of a car be the same when a car

travels around a sharp curve al a constant 60 km/h as when

it travels around a gentle curve at the same speed? Explain,

Describe all the forees acting on a child riding a horse on a

merry-go-round. Which of these [forces provides the

centripetal acceleration of the child?

A child on a sled comes {lying over the erest of a small hill,

as shown in Fig. 5-28. His sled does not leave the ground,

but he feels the normal force between his chest and the
sled  decrease as he -
goes  over the hill

Explain this decrease - - }

using Newton's second - -
faw pemiinl,

FIGURE 5-28
Question 13,
Sometimes it is said that water is removed (rom clothes in a
spin dryer by centrifugal [orce throwing the water outward.
Is this correct? Discuss.
Technical reports often specily only the rpm lor centrifuge
experiments, Why is this inadequate?
A girl is whirling a ball on a string around her head in a
horizontal planc. She wants to let go at precisely the right
time so that the ball will hit a target on the other side of the
yard. When should she let go of the string?

6.

o

9,

10.

1L

12,

B

‘J-N t e

14.

15.

17.

18.

19.

20,

2L

22

*23.

=24,

The game of tetherball is played with a ball tied to a pole
with a string. When the ball is struck,
it whirls around the pole as shown in
Fig. 5-29. In what direction is the
acceleration of the ball, and what
causes the acceleration?

e
~
s

- -

FIGURE 5-29
Problem 17.

Astronauts who spend long periods in outer space could be
adversely affected by weightlessness. One way to simulate
gravity is to shape the spaceship like a cylindrical shell that
rotates, with the astronauts walking on the inside surface
(Fig. 5-30). Explain how
this  simulates  gravity.
Consider (a) how ohjects
fall, (b) the force we feel
on our feel, and (¢} any
other aspects of gravity
you can think of.

FIGURE 5-30
Question 15,

A bucket of water can be whirled in a vertical circle without
the water spilling out, even at the top of the circle when the
bucket is upside down. Explain.

A car maintains a constant speed v as it traverses the hill
and valley shown in Fig, 5-31. Both the hill and valley have
a radius of curvature R. At which point, A, B, or C, is the
normal force acting on the car (a) the largest, (b) the
smallest? Explain. (¢) Where would the driver feel heaviest
and (d) lightest? Explain. (¢) How fast can the car go
without losing contact with the road at A?

FIGURE 5-31 Question 20.
Why do bicyele riders lean in when rounding a curve at high
speed?
Why do airplanes bank when they turn? How would you

compute the banking angle given the airspeed and radius of
the turn? [{ine: Assume an aerodynamic “lift” force acts
perpendicular to the wings.]

For a drag force of the form F = —bv, what are the units
of b?
Suppose two [orces act on an object, one force proportional

to v and the other proportional to v°. Which force domi-
nates at high speed?
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| Problems

5-1 Friction and Newton's Laws

1. (1) If the coefficient of kinetic friction between a 22-kg crate
and the floor is 0.30, what horizontal force is required to
move the crate at a steady speed across the floor? What
horizontal force is required if gy is zero?

2. (1) A force of 350N is required to start a 6,0-kg box moving
across a horizontal conerete floor. (a) What is the coefficient
of static friction between the box and the floor? (b) If the
35.0-N force continues, the box accelerates at (.60 m/s”.
What is the coefficient of kinetic friction?

3. (1) Suppose you are standing on a train accelerating at 0.20 g.
What minimum coefficient of static friction must exist
between your feet and the floor if you are not to slide?

4. (1) The coefficient of static friction between hard rubber
and normal street pavement is about 0.90. On how steep a
hill (maximum angle) can you leave a car parked?

5. (1) What is the maximum acceleration a car can undergo if
the coefficient of static friction between the tires and the
ground 15 0.907
(IT) (@) A box sits at rest on a rough 33" inclined plane.
Draw the free-body diagram, showing all the forces acting
on the box. (#) How would the diagram change if the box
were sliding down the plane. (¢) How would it change il the
box were sliding up the plance after an initial shove?

7. (11} A 25.0-kg box is released on a 27° incline and accelerates
down the incline at 0.30 m /s, Find the friction force impeding
its motion. What is the coefficient of kinetic friction?

8. (1) A car can decclerate at —3.80 m/s? without skidding
when coming to rest on a level road. What would its decel-
eration be il the road is inclined at 9.37 and the car moves
uphill? Assume the same static [riction coelficient.

9. (I1) A skier moves down a 277 slope at constant speed. What
can you say about the coefficient of [riction, py? Assume
the speed is low enough that air resistance can be ignored.

1. (IT) A wet bar of soap slides freely down a ramp 9.0m long
inclined at 8.0°. How long does it take to reach the bottom?
Assume gy = 0.060.

11 (11} A box is given a push so that it slides across the floor.
How far will it go, given that the coefficient of kinetic friction
is 0.15 and the push imparts an initial speed of 3.5 m/s?

12. (11} {(a) Show that the minimum stopping distance for an
automobile traveling at speed v is equal to v7/2 p, g. where
is the coefficient of static [riction between the tires and the
road, and g is the acceleration of gravity. () What is this
distance for a 1200-kg car traveling 95 km/h il p, = 0.65?
(¢) What would it be if the car were on the Moon (the accel-
eration of gravity on the Moon is about g/6) but all else
stayed the same?

13, (11) A 1280-kg car pulls a 350-kg trailer. The car exers a hori-
zontal force of 3.6 X 10° N against the ground in order to
accelerate. What force does the car exert on the trailer?
Assume an effective friction coefficient of 0.15 for the trailer.

14. (11) Police investigators, examining the scene of an accident
involving two cars, measure 72-m-long skid marks of one of
the cars, which nearly came to a stop before colliding. The
coefficient of kinetic friction between rubber and the pave-
ment is about (L80. Estimate the initial speed of that car
assuming a level road.

6

17.

20.

. (1) Piles of snow on slippery roofs can become dangerous

projectiles as they melt. Consider a chunk ol snow at the
ridge of a roof with a slope of 34°. (a) What is the minimum
value of the coelficient of static friction that will keep the
snow from sliding down? (b) As the snow begins to mell the
coefficient of static friction decreases and the snow finally
slips. Assuming that the distance from the chunk to the edge
of the roof is 6.0m and the coefficient of kinetic friction is
0.20, caleulate the speed of the snow chunk when it slides off
the roof. (¢} If the edge of the roof is 10.0m above ground,
estimate the speed of the snow when it hits the ground.

. (11) A small box is held in place against a rough vertical wall by

someone pushing on it with a force directed upward at 287
above the horizontal. The coefficients of static and kinetic
friction between the box and wall are 0.40 and 0.30, respec-
tively. The box slides down unless the applied force has
magnitude 23 N. What is the mass of the box?
(11) Two crates, of mass 65 kg and 125 kg , are in contact and at
rest on a horizontal surface (Fig. 5-32). A 650-N force is
exerted on the 65-kg crate. If the coefficient of kinetic friction
is .18, calculate (a) the acceleration of the system, and (b) the
force that each crate exerts on the other. (¢) Repeat with the
crates reversed.
G6SON_ | 65ke | 125ke
FIGURE 5-32
Problem 17.

. (1) The crate shown in Fig. 5-33 lies on a plane tilted at

an angle @ = 250" to the horizontal, with g = 0.19.
(@) Determine the acceleration of the
crate as it slides down the plane.
(b) Il the crate starts {rom rest
8.15m up the plane from its base,
what will be the crate’s speed
when it reaches the bottom of

the incline?

FIGURE 5-33
Crate on inclined plane.
Problems 18 and 19.

(11} A crate is given an initial speed of 3.0m/s up the
25.0° plane shown in Fig. 5-33. (a) How far up the plane will
it go? (h) How much time clapses before it returns Lo its
starting point? Assume py = 0.17.

(1) Two blocks made of different materials connected together
by a thin cord, slide down a planc ramp inclined at an angle
to the horizontal as shown in Fig. 5-34 (block B is above
block A). The masses of the blocks are m, and my, and the
coelficients of friction are py and pg. I my = myg = 5.0kg,
and py =020 and py = 0.30, deter-

mine (a) the acceleration of the
blocks and (b) the tension in the
cord, for an angle ¢ = 327,

FIGURE 5-34 8
Problems 20 and 21. i
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26.

(II) For two blocks. connected by a cord and sliding down
the incline shown in Fig. 5-34 (see Problem 20). deseribe
the motion (a) if pa < pg. and (b} if wy > py. (c) Deter-
mine a lormula for the acceleration of cach block and the
lension Frin the cord in terms of my . mp, and 8; interpret
your results in light of your answers to (a) and (b).

. (1) A flatbed truck is carrying a heavy crate. The coelficient

of static friction between the crate and the bed of the truck
is 0.75. What is the maximum rate at which the driver can
decelerate and still avoid having the crate slide against the
cab of the truck?

(I1) In Fig. 5-35 the coefficient of static {riction between
mass nty and the table is 0,40, whereas the coefficient of
kinetic friction is 0.30 (a) What minimum value of my
will keep the system from starting to move? (b) What
value(s) of m, will keep the system moving at constant
speed?

FIGURE 5-35 Problems 23 and 24,

(11) Determine a formula for the acceleration of the system
shown in Fig. 5-35 in terms of m, iy, and the mass of the
cord, m. Defline any other variables needed.

. (I1) A small block of mass m is given an initial speed vy up

a ramp inclined at angle & to the horizontal. It travels a
distance d up the ramp and comes to rest. (a) Delermine
a formula for the coefficient of kinetic friction between
block and ramp. (b) What can you say about the value of
the coefficient of static friction?

(I1) A 75-kg snowbhoarder has an initial velocity of 5.0 m/s
at the top of a 287 incline (Fig. 5-36). Aflter sliding down the
110-m long incline (on which the cocflicient of kinetic
friction is gy = (L18), the snowboarder has attained a
velocity v. The snowboarder then slides along a flat surface
{on which py = 0.15) and comes to rest after a distance x.
Use Newton's second law to find the snowhoarder’s
acceleration while on the incline and while on the flat
surface. Then use these accelerations to determine x.

I

5
8 ‘\

My =01 -

£ f

=] -N’\

FIGURE 5-36

}*‘u

Problem 26.

27. (1) A package of mass m is dropped vertically onto a hori-

29.

3L

zontal conveyor bell whose speed is v = 1.5m/s, and the
coefficient of kinetic friction between the package and the
beltis py = 0.70. (a) For how much time does the package
slide on the belt (until it is at rest relative o the belt)?
(b} How far does the package move during this time?

. (1) Two masses my = 2.0kg and my = 5.0kg are on

inclines and are connected together by a string as shown in
Fig. 5-37. The coefficient of kinetic friction between each
mass and its incline is py = 0.30. If m moves up, and iy
moves down, determine their acceleration.

L™ 2 _

&

2

FIGURE 5-37 Problem 28.

(11 A child slides down a slide with a 34% incline. and at the
hottom her speed is precisely half what it would have been
if the slide had been frictionless, Calculate the coefficient of
kinetic friction between the slide and the child.

. (11) (&) Suppose the coelficient of kinetic friction between

my and the plane in Fig. 5-38 is gy = 0.15, and that
my = my = 2Tkg. As my moves down, determine the
magnitude of the acceleration of my and mp, given
# = 347, (b) What smallest value of gy will keep the system
from accelerating?

FIGURE 5-38 Problem 30,

(111) A 3.0-kg block sits on top of a 5.0-kg block which is on
a horizontal surface. The 5.0-kg block is pulled to the right
with a force F as shown in Fig. 5-39. The coefficient of static
friction between all surfaces is 0.60 and the kinetic coeffi-
cient is (140, (a) What is the minimum value of F needed to
move the two blocks? (b) If the force is 10% greater than
your answer for (@), what is the acceleration of each block?

! ——————— 10[5

““!—j Qﬂk; —P‘-

FIGURE 5-39 Problem 31.
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32, (1) A 4.0-kg block is stacked on top of a 12.0-kg block,

which is accelerating along a horizontal table at a = 5.2 m/s*
(Fig. 5-40). Let py = py = g (@) What minimum coefficient
ol [riction g between the two blocks will prevent the 4.0-kg
block from sliding off? (k) If w is only hall this minimum
value, what is the acceleration of the 4.0-kg block with respect
to the table, and (¢) with respect 1o the 12.0-kg block?
(d) What is the force 1

that must be applied to 40 kg
the 12.0-kg block in (@) -
and in (b), assuming that
the table is frictionless?
12:0%kg | a=52mls?

FIGURE 5-40
Problem 32.

(11} A small block of mass m rests on the rough, sloping side
of a triangular block of mass M which itsell rests on a hori-
zontal [rictionless table as shown in Fig. 5-41. Il the coelfi-
cient of statie friction is g, determine the minimum horizontal
force Fapplied to M

that will cause the \.1',,,' i
small block m 1o e
start moving up 1he F —t >
incline. M w\
: R
L .
FIGURE 5-41

Problem 33.

5-2 to 5-4 Uniform Circular Motion

(1) What is the maximum speed with which a 1200-kg car
can round a turn of radius 0.0 m on a flat road if the coelfi-
cient of [riction between tires and road is 0.657 Is this result
independent of the mass of the car?

(1) A child sitting 1.20m from the center of a merry-go-
around moves with a speed of 1.30m/s Caleulate (a) the
centripetal acceleration of the child and (b) the net hori-
zontal force exerted on the child (mass = 22.5kg).

. (1) A jet plane traveling 1890 km/h (525 m/s) pulls out of a
dive by moving in an arc of radius 4.80 km, What is the
plane’s acceleration in g's?

(1) Is it possible to whirl a bucket of water fast enough in a
vertical circle so that the water won't fall out? If so. what is
the minimum speed? Define all quantities needed.

. (I1) How fast (in rpm) must a centrifuge rotate if a particle
8.00 cm from the axis of rotation is to experience an acceler-
ation of 125,000 g's?

(I1) Highway curves are marked with a suggested speed. If
this speed is based on what would be safe in wet weather,
estimate the radius of curvature for a curve marked 50 km/h,
Use Table 5-1.

(IT) At what minimum speed must a roller coaster be
traveling when upside down
at the top of a circle
(Fig. 5-42) so that the
passengers do not fall out?
Assume a radivs of curva-
ture of 7.6 m.

FIGURE 5-42
Problem 40,

41.

43.

46.

47

4.

(1) A sports car crosses the bottom of a valley with a radius
of curvature equal to 95 m. At the very bottom, the normal
force on the driver is twice his weight. At what speed was
the car traveling?

. (1) How large must the coelficient of stalic friction be

between the tires and the road if a car is to round a level
curve of radius 85 m at a speed of 95 km/h?

(11) Suppose the space shuttle is in orbit 400 km [rom the
Earth's surface, and circles the Earth aboul once every
90 min. Find the centripetal acceleration of the space shuttle
in its orbit. Express your answer in terms of g, the gravita-
tional acceleration at the Earth’s surface,

. (1) A bucket of mass 2.00 kg is whirled in a vertical circle of

radius 1.10 m. At the lowest point of its motion the tension
in the rope supporting the bucket is 25.0N. (a) Find the
speed of the bucket. (h) How fast must the bucket move at
the top of the circle so that the rope does not go slack?

. (I1) How many revolutions per minute would a 22-m-

diameter Ferris wheel need to make for the passengers to
feel “weightless™ at the topmaost point?
(I1) Use dimensional analysis (Section 1-7) to obtain the
form for the centripetal acceleration, ag = o%/r.
() A jet pilot takes his aircraft in a vertical loop
(Fig. 5-43). (a) I the jet is moving at a speed of 1200km/h
at the lowest point of the loop, determine the minimum
radius of the circle so that the centripetal acceleration at the
lowest point does not exceed 6.0 g's (b) Caleulate the 78-kg
pilot’s  effective  weight  (the
force with which the seat pushes .
up on him) at the bottom of the
circle, and (¢) at the top of the
circle (assume the same speed).

T

FIGURE 5-43
Problem 47.

. (11} A proposed space station consists of a circular tube that

will rotate about its center (like a tubular bicycle tire),
Fig. 5—44. The circle formed by the tube has a diameter of
about 1.1 km. What must be the rotation speed (revolutions
per day) if an effect equal to
gravity at the surface of the /

Earth (1.0 g) is to be felt? m

FIGURE 5-44
Problem 48.

(11} On an ice rink two skaters of equal mass grab hands
and spin in a mutual circle once every 2.5s Il we assume
their arms are each 0.80m long and their individual masses
are 60.0 kg. how hard are they pulling on one another?

50. (1) Redo Example 5-11, precisely this time, by not ignoring

the weight of the ball which revolves on a string (0,600 m long.
In particular, find the magnitude of Fy, and the angle it makes
with the horizontal, [Hint: Set the horizontal component of Fr
cqual Lo mag ; also, since there is no vertical motion, what can
you say about the vertical component of Fy 7]
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51 (1) A coin is placed 12.0em from the axis of a rotating

w

wn

turntable of variable speed. When the speed of the turntable
is slowly increased, the coin remains fixed on the turntable
until a rate of 35.0 rpm (revolutions per minulte) is reached,
at which point the coin slides off. What is the coeflicient of
static friction between the coin and the turntable?

. (I1) The design of a new road includes a straight stretch that

is horizontal and flat but that suddenly dips down a steep
hill at 22° The transition should be rounded with what
minimum radius so that cars traveling 95 km/h will not leave
the road (Fig. 5-45)?

FIGURE 5-45
Problem 52. -

. (1) A 975-kg sports car (including driver) crosses the

rounded top of a hill (radius =880m) at 12.0m/s
Determine (a) the normal force exerted by the road on the
car, (b) the normal force exerted by the car on the 72.0-kg
driver, and (¢) the car speed at which the normal force on
the driver equals zero.

(11) Two blocks, with masses m 5 and my, are connected to
cach other and to a central post by cords as shown in
Fig. 5-46. They rotate about the post at frequency [
(revolutions per second) on a [rictionless horizontal surface
at distances ry and rg from the post, Derive an algebraic
expression for the tension in each segment of the cord
(assumed massless).

S —— =

FIGURE 5-46 Problem 54.

. (1) Tarzan plans to cross a gorge by swinging in an arc from

a hanging vine (Fig. 5-47). Il his arms are capable of
exerting a force of 1350 N on the rope, what is the maximum
speed he can tolerate at the
lowest point of his swing? His
mass is 78kg and the vine is
5.2m long.

-

b
a
»—

FIGURE 5-47
Problem 55.

*67. (II) An object moving vertically has v =w, al [ =

56, (IT) A pilot performs an evasive maneuver by diving verti-

cally at 310m/s. If he can withstand an aceeleration of
9.0 g’s without blacking out, at what altitude must he begin
Lo pull out of the dive to avoid crashing into the sea?

57. (1l1) The position of a particle moving in the xy plane is

given by 7= 20cos(3.0rad/st)i + 2.0sin(3.0rad/s )],
where r is in meters and ¢ is in seconds. (a) Show that this
represents circular motion of radius 2.0m centered at the
origin. (b) Determine the velocity and acceleration vectors as
functions of time. (¢) Determine the speed and magnitude of
the acceleration. () Show that a = v®/r. (¢) Show that the
acceleration vector always points toward the center of the
circle.

58, (I11) If a curve with a radius of 85 m is properly banked for a

car traveling 65 km/h, what must be the coefficient of static
friction for a car not to skid when traveling at 95 km/h?

59, (111) A curve of radius 68 m is banked for a design speed of

85 km /h. If the coefficient of static friction is 0.30 (wet pave-
ment), at what range of speeds can a car safely make the
curve? [Hint: Consider the direction of the friction force
when the car goes too slow or too fast.]

5-5 Nonuniform Circular Motion

“60, (11) A particle starting from rest revolves with uniformly

increasing speed in a clockwise circle in the xy plane. The
center of the circle is at the origin of an xv coordinate
system. AL [ = 0, the particle isat x = 0.0, y = 2.0m. Al

= 2.0s, it has made onc-quarter of a revolution and is at
x=20m, y = 00. Determine (a) its speed at ¢ = 205,
(b) the average velocity vector, and (¢) the average acceler-
ation vector during this interval,

“61. (1) In Problem 60 assume the tangential acceleration is

constant and determine the components of the instantaneous
acceleration at (a) ¢ = 0.0, (b) t = 1.0s, and (¢) ¢ = 2.0s.

“62. (I1) An object moves in a circle of radius 22 m with its speed

given by v = 3.6 + 1.51%, with v in meters per second and ¢
in scconds. At ( = 3.0s, find (@) the tangential acecleration
and (b) the radial acceleration.

#63. (1) A particle rotates in a circle of radius 3.80m. At a

particular instant its acceleration is 1.15 m/s* in a direction
that makes an angle of 38.0° 1o its direction of motion.
Determine its speed (a) at this moment and (b) 2.00s later,
assuming constant tangential acceleration.

“64. (111) An object of mass m is constrained to move in a circle of

radius r. Its tangential acceleration as a function of time is given
by aug = b + cf’, where b and ¢ are constants. 1f ¢ = vy at
1 = 0, determine the tangential and radial components of the
force, Fiyn and Fg, acting on the object at any time [ > 0,

5-6 Velocity-Dependent Forces
*65. (I) Use dimensional analysis (Section 1-7) in Example 5-17

to determine if the time constant 7is = = m/b or 7 = b/m.

#66. (11) The terminal velocity of a 3 % 107 kg raindrop is about

9m/s. Assuming a drag force iy = —be, determine (a) the
value of the constant & and () the time required for such a
drop, starting from rest, to reach 63% of terminal velocity.

0.
Determine a formula [or its velocity as a function of time
assuming a resistive force F = —bv as well as gravity for
two cases: (a) ¥ is downward and (b) ¥, is upward.
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“ 68,

* 69,

*70.

(I11) The drag force on large objects such as cars, planes, and
sky divers moving through air is more nearly Fy = —bv’
(a) For this quadratic dependence on v, determine a
formula for the terminal velocity vy, of a vertically [alling
object. (b) A 75-kg sky diver has a terminal velocity of
about 60m/s: determine the value of the constant b.
(¢) Sketch a curve like that of Fig. 5-27b for this case of
Fy o v For the same terminal velocity, would this curve lie
above or below that in Fig. 5-277 Explain why.
(111} A bicyelist can coast down a 7.0° hill at a steady
9.5 km/h. If the drag force is proportional to the square of
the speed v, so that £y = —cv?, caleulate (a) the value of
the constant ¢ and (b) the average force that must be applied
in order to descend the hill at 25 km/h. The mass of the
cyclist plus bicycle is 80.0 kg. Ignore other types of [riction.
(111} Two drag forces act on a bicycle and rider: Fy | due 10
rolling resistance, which is essentially velocity independent;
and Fp due to air resistance, which is propartional to v*.
For a specific bike plus rider of total mass 78kg.
Foy = 40N: and for a speed of 22m/s, Fp, = 1.ON,
(ar) Show that the total drag force is

Fy = 40 + 0207,
where v is inm/s, and Fp, is in N and opposes the motion.
(b) Determine at what slope angle # the bike and rider can
coast downhill al a constant speed of 8.0 m/s.

l General Problems

7.

72,

L

74,

75,

(1) Determine a formula for the position and acceleration
of a falling object as a function of time if the object starts
from rest at (=10 and undergoes a resistive force
F = —bv, asin Example 5-17.

(I} A block of mass m slides along a horizontal surface
lubricated with a thick oil which provides a drag lorce
proportional to the square root of velocity:
1

Fp = =bui,
If w=w, at =0, determine v and x as {unctions of
time.
(111) Show that the maximum distance the block in Problem 72
can travel is 2m vi/%/3b.

(I11) You dive straight down into a pool of water. You hit the
water with a speed of 5.0 m/s, and your mass is 75 kg. Assuming
a drag force of the form Fy = —(1.00 x 10* kg/s) v, how
long does it take you to reach 25 of your original speed?
(1gnore any effects of buoyancy.)

(1) A motorboat traveling at a speed of 2.4 m/s shuts ofl
its cngines at ¢ = 0. How [ar docs it travel before coming
to rest il it is noted that after 3.05 its speed has dropped to
half its original value? Assume that the drag force of the
water is proportional to v,

6.

7.

8.

™.

S,

A coffee cup on the horizontal dashboard of a car slides
forward when the driver decelerates from 45 km/h 1o rest
in 3.5s or less, but not if she decelerates in a longer time.
What is the coefficient of static friction between the cup
and the dash? Assume the road and the dashboard are
level (horizontal).

A 2.0-kg silverware drawer does not slide readily. The
owner gradually pulls with more and more force, and when
the applied force reaches 9.0N, the drawer suddenly
opens, throwing all the utensils to the floor. What is the
coefficient of static friction between the drawer and the
cabinet?

A roller coaster reaches the top of the steepest hill with a
speed of 6.0 km/h, It then descends the hill, which is at an
average angle of 45° and is 45.0m long. What will its
speed be when it reaches the bottom? Assume gy = 0,12,
An 18.0-kg box is released on a 37.0° incline and accclerates
down the incline at 0220m/s% Find the friction force
impeding its motion, How large is the coefficient of friction?
A flat puck (mass M) is revolved in a cirele on a frictionless
air hackey table top, and is held in this orbit by a light cord
which is connected to a dangling mass (mass m) through a
central hole as shown in Fig. 548, Show that the speed of
the puck is given by » = VimgR/M.

FIGURE 5-48 Problem §0.

81,

83.

A motoreyclist is coasting with the engine off at a steady
speed of 2000 m/s but enters a sandy stretch where the coef-
ficient of kinetic friction is 0.70. Will the cyclist emerge from
the sandy stretch without having to start the engine if the
sand lasts for 15m? Il so, what will be the speed upon
emerging?

. In a “Rotor-ride™ at a carnival, people rotate in a vertical

cylindrically walled “room.” (See Fig. 5-49). If the room
radius was 5.5m, and the rotation frequency (L50 revo-
lutions per second when the floor drops out, what
minimum coefficient of static friction keeps the people from
slipping down? People on this ride said they were “pressed
againsl the wall.” Is there really an outward force pressing
them against the wall? If so, what is its source? If not, what
is the proper description of their situation (besides nausea)?
[Hint: Draw a free-body diagram for a person.]

FIGURE 5-49 Problem 82,

A device for training astronauts and jet fighter pilots is
designed to rotate the trainee in a horizontal circle of radius
110 m. If the force felt by the trainee is 7.45 times her own
weight, how [ast is she rotating? Express your answer in
both m/s and rev/s.
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84.

85.

§7.

89.

9.

A 1250-kg car rounds a curve of radius 72 m banked at an
angle of 14°. If the car is traveling at 85 km/h, will a [riction
force be required? If so, how much and in what direction?
Determine the tangential and centripetal components of the
net force exerted on a car (by the ground) when its speed is
27 m/s, and it has accelerated to this speed from rest in 9.0
on a curve of radius 450 m, The car’s mass is 1150 kg.

The 70.0-kg climber in Fig. 5-50 is supported in the
“chimney™” by the friction forces exerted on his shoes and
back. The static coefficients of fric-
tion between his shoes and the wall,
and between his back and the wall,
are 0.80 and 0.60, respectively. What
is the minimum normal force he
must exert? Assume the walls are
vertical and that the static friction
forces are both at their maximum,
Ignore his grip on the rope.

FIGURE 5-50
Prablem 86.

A small mass m is set on the surface of a sphere, Fig. 5-51.
If the coefficient of static
friction is pu, = 070, at
what angle ¢ would the
mass start sliding?

[ T S——

FIGURE 5-51
Problem 87,

. A 28.0-kg block is connected to an empty 2.00-kg bucket by

a cord running over a [rictionless pulley (Fig. 5-52). The
coefficient of static friction between the table and the block
18 045 and the cocfficient of kinetic friction between the
table and the block 1s 0.32.
Sand is gradually added
to the bucket until the
system just begins to move.
(a) Calculate the mass of |
sand added to the bucket. |
(h) Calculate the accelera-

tion of the system. #

280kg

FIGURE 5-52
Problem 88,

A car is heading down a slippery road at a speed of 95km/h.
The minimum distance within which it can stop without
skidding is 66 m. What is the sharpest curve the car can
negotiate on the ey surface at the same speed without
skidding?

What is the acceleration expericnced by the tip of the
1.5-cm-long sweep second hand on your wrist watch?

91,

94,

96.

.

An airplane traveling at 480 km/h needs to reverse its course.
The pilot decides to accomplish this by banking the wings at
an angle of 38°, () Find the time needed to reverse course.
(b) Describe any additional force the passengers experience
during the turn. [Hin: Assume an 5
aerodynamic “lift” force that acls Lift
perpendicularly to the flat wings; see \un:c
Fig. 5-53.] \
Ag-
._/ .'.I _l“.-
o’ )

FIGURE 5-53
Problem 91.

. A banked curve of radius R in a new highway is designed so

that a car traveling at speed v, can negotiate the turn safely
on glare ice (zero friction). If a car travels too slowly then it
will slip toward the center of the circle. If it travels too fast,
it will slip away from the center of the circle. If the
coefficient of static friction increases, it becomes possible for
a car to stay on the road while traveling at a speed within
a range from ¥y, 10 Uyay. Derive formulas for vy, and
Vinay 45 functions of g, vy, and R,

A small bead of mass m is constrained to slide without
friction inside a circular vertical hoop of radius r which
rotates about a vertical axis

(Fig. 5-54) at a frequency f.

() Determine the angle 8

where the bead will be in
equilibrium—that is, where

it will have no tendency to

move up or down along the

hoop, (b) If f = 2.00 rev/s

and r = 22.0 em, what is 87

() Can the bead ride as

high as the center of the /
circle (6 = 90°)7 Explain. m

_e_

~

PP —

FIGURE 5-54
Problem 93.

Earth is not quite an inertial frame. We often make measure-
ments in a reference frame fixed on the Earth, assuming
Earth is an inertial reference frame. But the Earth rotates, so
this assumption is not quite valid. Show that this assumption
is off by 3 parts in 1000 by calculating the acceleration of an
object at Earth’s equator duc to Earth’s daily rotation, and
compare to g = 9.80 m/s*, the acceleration due to gravity.

. While fishing, you get bored and start to swing a sinker

weight around in a circle below you on a 0.45-m picee of
fishing line. The weight makes a complete circle every 0.50 5
What is the angle that the fishing line makes with the
vertical? [Hing: Sce Fig. 5-20.]

Consider a train that rounds a curve with a radius of 570 m
at a speed of 160 km/h (approximately 100 mi/h). (a) Calcu-
late the [riction force needed on a train passenger of mass
75kg if the track is not banked and the train does not tilt.
{b) Caleulate the friction force on the passenger if the train
tilts at an angle of 8.0° toward the center of the curve.

A car starts rolling down a 1-in-4 hill (1-in-4 mcans that for
cach 4m traveled along the road, the elevation change is
1 m). How fast is it going when it reaches the bottom after
traveling 55 m? (a) lgnore friction. (b) Assume an elfective
coefficient of friction equal to 0.10,
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98. The sides of a cone make an angle ¢ with the vertical. A
small mass m is placed on the inside of the cone and the cone,
with its point down, is revolved at a frequency f (revolutions
per second) about its symmetry axis, I[ the coclficient of static
[riction is p1., at what positions on the cone can the mass be
placed without sliding on the cone? (Give the maximum and
minimum distances, r. from the axis).

99, A 72-kg water skier is being accelerated by a ski boat on a
flat (“glassy™) lake. The coefficient of kinetic friction
between the skier's skis and the water surface is gy = 0.25
{Fig. 5-55). (@) What is the skier's aceeleration if the rope
pulling the skier behind the boat applies a horizontal tension
force of magnitude Fp = 240N to the skier (8 = 0°)?
() What is the skier's horizontal acceleration il the rope
pulling the skier exerts a [orce of Fp = 240N on the skier
at an upward angle # = 12°7 (¢) Explain why the skicer’s
acceleration in part (b) is greater than that in part (a).

Fr=240N

| | —

FIGURE 5-55 Problem 99.

100. A ball of mass m = 1.0kg at the end of a thin cord of length
r=080m revolves in a vertical circle about point O, as
shown in Fig. 5-56. During the time we observe it, the only
forces acting on the ball are gravity and the tension in the
cord. The motion is circular but not uniform because of the
force of gravity. The ball increases in speed as it descends and
decelerates as it rises on the other side of the cirele. At the
moment the cord makes an angle # = 30" below the
horizontal, the ball’s

———

speed is 6.0m/s. At Vi ™%

this point, determine /’ \\

the tangential accel- \
cration, the radial o —-———-lll--——-

!
1
acceleration, and the |
tension in the cord, \\

Fp. Take 8 increasing LY —
downward as shown. N > e
e ————
mg cos H{' ) it
~ s
FIGURE 5-56 S ’
Problem 100, mg

101. A car drives at a constant speed around a banked circular

track with a diameter of 127 m. The motion of the car can
be described in a coordinate system with its origin at the
center of the circle. At a particular instant the car’s accel-
eration in the horizontal plane is given by

i o= (157 - 232)) m/s%

(a) What is the car’s speed? (b) Where (x and y) is the car
at this instant?

*Numerical/Computer

102, (111) The force of air resistance (drag force) on a rapidly

falling body such as a skydiver has the form fp = —kv™, so
that Newton’s second law applied to such an object is

mi—t = mg = kvt

where the downward direction is taken to be positive.
(a} Use numerical integration [Section 2-9] to estimate
(within 2%) the position. speed, and acceleraton, from 1 = 0
up to t = 15.0s, for a 75-kg skydiver who starts from rest,
assuming & = 022 kg/m. (b) Show that the diver eventually
reaches a steady speed, the rerminal speed. and explain why
this happens. (¢) How long does it take for the skydiver 10
reach 99.5% of the terminal speed?

“103. (111) The coefficient of kinetic friction py between two

surfaces is not strictly independent of the velocity of the
object. A possible expression for py for wood on wood is

B 0.20
M0 0002007

where v is in m/s. A wooden block of mass 5.0 kg is at rest
on a wooden [loor, and a constant horizontal force of 41 N
acts on the block. Use numerical integration [Section 2-9]
to determine and graph (a) the speed of the block, and (b) its
position, as a function of time from 0 to 3.0s (¢) Determine
the percent difference for the speed and position at 5.0s
il gy is constant and equal to 0.20.

“104. (I11) Assume a net force F = —mg — kv* acts during the

upward vertical motion of a 250-kg rocket, starting at
the moment (f = 0) when the fuel has burned out and the
rocket has an upward speed of 120m/s Let & = 0.65kg/m.
Estimate v and y at 1.0-s intervals for the upward motion
only, and estimate the maximum height reached. Compare
to free-flight conditions without air resistance (k = ).

Answers to Exercises

Az (c).

B: Fpy is insufficient to keep the box moving for long,
C: No—the aceeleration is not constant (in dircetion).
D: (a), it doubles,

E: (d).

F: (a).

G: (¢).

H:

Yes.

{a) No change; (b) 4 times larger.
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